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5)Introduction 
The goal of this grant is to establish a new biological system for studying the 
progression of prostate cancer. We propose a technology we have previously 
developed to help define X-chromosome inactivation to increase our 
understanding of the molecular biology of prostrate cancer. Using a mouse 
model, our goal is to induce functional Loss of Heterozygosity (LOH) on a 
particular chromosome at various specified times during development or life 
span. Specifically, we plan to induce LOH only in mouse prostatic tissues. We 
are particularly interested in evaluating sites of allelic loss previously identified 
to be associated with prostate cancer (7q, 8p, lOp, lOq, 13q, 16q, 18q) in humans 
and understanding the effect of LOH on s)mtenic mouse chromosomes. We 
believe this approach has the potential to increase our knowledge of the 
acquisition and progression of prostate cancer. A systematic experimental 
approach for creating LOH can help define new prostate specific tumor 
suppressor genes. As human chromosome 8p is most frequently associated with 
prostate cancer (80% of primary and metastatic prostate cancers show this 
chromosomal variant, our mouse model system will initially focus on the 
development of those mouse chromosomes syntenic with human chromosome 
8p. This technology would augment the positional cytogenetic approach to 
understanding the genetic complexity of prostate cancer. 

6) Body 
Background 
Activation or inactivation of a gene may lead to carcinogenesis. Activation of genes 

refers to a dominant condition that results in stimulation of both growth and progression 
of cancer. Inactivation of genes refers to the phenomena where tumor supressor genes 
(genes that normally inhibit carcinogenesis) are inactivated resulting in a loss function. 
Classically, these mutations are due to lesions which alter the linear sequence of a 
particular gene. In addition, somatic dysregulation or inappropriate gene-silencing due to 
methylation (where the gene is present but nonfunctional), may have similar effects. 

Inactivation of a gene may occur as a result of allelic deletion where one or both 
copies of a locus is lost (1-4). Most frequently one copy is lost and is detected as a loss of 
heterozygosity (LOH). When this loss involves a tumor suppression gene, carcinogenesis 
may occur. In prostate cancer, several common sites of allelic loss have been identified 
including 7q, 8p, lOp, lOq, 13q, 16q, and 18q (1-4). The 8p arm is most frequently lost as 
80% of primary and metastatic prostate cancers show this chromosomal variant (10,11). 
Most allelic deletions on 8p involve large chromosomal intervals. Working from large 
collections of clinical specimens, researchers are attempting to define a common 
overlapping chromosomal region. From this overlapping region, the goal is to then 
identify particular genes and evaluate their relationship to prostrate cancer. 

This approach to allelic loss mapping is difficult if LOH is common and the lesions 
are complex or non-specific. The approach now used to solve this dilemma is to pursue a 
random search from available clinical specimens to try to strengthen the correlation of 
tumor phenotype and chromosome architecture. Another approach to accelerate gene 
identification in prostrate cancer would be to experimentally test the effect of LOH for 
particular chromosomal regions on the development of prostate cancer. To date, this 
approach has not been utilized although it has the potential to greatly speed up the 
process of prostrate cancer gene identification. 



This accelerated approach would mvolve inactivating areas of the mouse 
chromosome known to contain sites of allelic loss previously identified to be associated 
with prostrate cancer. Despite the fact that most human genes have direct homologues in 
the mouse, the structure of the mouse chromosomes are quite different from the human. 
Apart from the fact that human chromosomes are acrocentric and the mouse 
chromosomes are telocentric, the mouse and human genomes show many dissimilarities 
in the linear arrangements of genes. After years of chromosome mapping by a variety of 
techniques, a comparative physical and genetic map of the human and mouse 
chromosomes has emerged (12,13). It is now possible to draw a direct comparison 
between subregions of a human and mouse chromosome. For example, human 
chromosome 8p is distributed in discrete blocks among two mouse chromosomes (mouse 
ch8 and mouse chl4). These blocks, or syntenic regions, are stable heritable units of 
genes. Within each chromosomal block, the arrangement of genes is very similar if not 
identical between mouse and human. Inactivation of these "human chromosome" blocks 
on the mouse chromosome would allow for physical interval testing to determine their 
role in prostate cancer. Furthermore by experimentally inducing LOH in the mouse, these 
syntenic blocks could provide a experimental directed approach to test how a particular 
region of a human chromosome might operate in the pathogenesis of prostate cancer. 

Lessons from X-chromosome inactivation: developmental LOH. 
A new technology is required to direct the functional inactivation of a chromosome 

and create experimental LOH in transgenic mice. We propose to create this technology 
based upon our basic pioneering work to define the process of X-chromosome inactivation. 
X-chromosome inactivation is the only known example in mammals of a developmentally 
regulated functional loss of heterozygosity. It is an example of an epigenetic 
developmental program that begins anew in the development of every female and 
represents a unique aspect of an individuals characteristics. X-inactivation is a particular 
type of epigenetic program operating in female mammals for the purpose of gene dosage 
compensation between the heterogametic sexes. (14,15). X-inactivation allows a female 
embryo to functionally appear as monosomic for the X-chromosome despite the presence 
of two X-chromosomes. If this process did not occur it would be catastrophic to the 
developing female embryo with twice the number of X-linked genes as the male. 

Two facts are established regarding the mechanism of X-inactivation: (1) a gene 
which encodes a nontranslateable RNA called Xist is necessary for X inactivation (16,17). 
Early in development, prior to X-inactivation both male and female cells exhibit a low level 
of Xist expression (18,19). Subsequent to implantation in female cells one X-chromosome 
is chosen and exhibits a significant induction of Xist expression (18,19). Soon after Xist 
induction, genes in cis to the actively transcribed Xist are repressed for the lifetime of the 
cell (19-21). If the structural portion of the Xist gene is interrupted by homologous 
recombination, the X-chromosome containing this interrupted allele is incapable of 
undergoing X-inactivation (16,17). This demonstrates the necessity of Xist for X- 
inactivation. 

A region on the X-chromosome not much larger than the Xist gene is sufficient to 
direct the choice of which X-chromosome undergoes inactivation (19,21). This DNA 
interval was first cloned in the form of a yeast artificial chromosome (YAC) by our 
laboratory and introduced into male embryonic stem cell lines derived (ES cells) (19). This 
450 kb YAC was sufficient to be counted as an X-chromosome and direct inactivation on 
any chromosome in which it was integrated (19). Similarly a 40 kb cosmid was shown to 
sufficient to cause autosomal inactivation when the cosmid was autosomally integrated in 
cis in male ES cells (21). 



Based upon the observation that a YAC or cosmid spanning Xist is necessary and 
sufficient for X-chromosome inactivation, a vector harboring the Xist gene under 
conditional control could operate to inactivate any chromosome in which it was integrated. 
To this end we have created a full length cDNA of the murine Xist and used it to create a 
vector in which the cDNA is under control of the tetracycline inducible operator system 
(22). This vector once integrated into the chromosome of choice would inactivate this 
chromosome once the Xist gene was to be activated. The activation of the Xist gene would 
be controlled by the exogenous administration of tetracycline at any point in development. 

The common mouse has been used as a model system for experimental prostate 
cancer research. Despite the fact that prostate cancer is rarely observed among rodents 
several approaches to experimental modeling have been developed in the mouse. Three 
approaches have been described including 1) androgenic hormone stimulation with 
carcinogen exposure, 2) retroviral transduction and organ reconstitution and 3) transgenic 
targeting (23). In this proposal we will only address the transgenic approach to prostate 
cancer modeling. There have been essentially two transgenic models described which show 
prostate changes characteristic of human disease. These two models involve two different 
dominant oncogene/protein and two different promoters. The first system involves the use 
of the MMTV promoter and the Int-2 oncogene. The MMTV promoter is a glucocorticoid 
responsive viral promoter with favored expression in the mammary tissue of the lactating 
female. However, it has been shown that male transgenic mouse lines expressing the Int-2 
gene under MMTV control results in dramatic epithelial hyperplasia of the prostate (24). 
The TRAMP model (transgenic adenocarcinoma mouse prostate) has also been described 
(25,26). The TRAMP system involves the rat probasin promoter directing expression of the 
SV40 large T gene in a prostate specific marmer. Several reports indicate that this model 
system recapitulates the aggressive course of human prostatic cancer (25-28). Prostatic 
intraepithilial neoplasia is observed in male mice of 8 -12 weeks age. These lesions appear 
to progress to adenocarcinoma by 30 weeks and finally to distant metastases (25-28). 

Preliminary Data 
At the time of our Phase I grant submission we had finished the construction of 

what we believed to be a full length inducible cDNA version of the gene Xist. Our 
construction was guided by the published structures for the Xist genomic locus and 
RNA (34,35). During the final quality control steps, prior to introduction of our 
construct into ES cells and mice we started an exhastive confirmation process to 
demonstrate not only that our Xist clone was identical to the published Xist structure, 
but that our clone was identical to the sequences found in the mouse germline. Much to 
our surprise (and dismay) despite the absolute identity of our clone the published 
structure, our clone contained discrepancies relative to the mouse genome. We struggled 
to discover the basis of these differences, and revealed that the published structure for 
Xist was in error and in need of revision. We discovered new structural data for the 
murine Xist gene. These data were published (36), and this paper demonstrates that the 
murine Xist transcript is at least 17.8 kb not 14.7 kb as previously reported. The new 
structure of the murine Xist gene described herein has seven exons, not six. Exon VII 
encodes an additional 3.1 kb of information at the 3'-end. Exon VII contains seven 
possible sites for polyadenylation, four of these sites are located in the newly discovered 
3'-end. Consequently it is possible that several distinct transcripts may be produced 
through differential polyadenylation of a primary transcript. Alternative use of 
polyadenylation signals could result in size changes for Exon VII. Two major species of 
Xist are detectable by Northern analysis, consistent with differential polyadenylation. 



Analyzing the human XIST structure has resulted in a strong structural 
correlation between the two organisms (37). Comparison of sequences from the genomic 
interval downstream to the 3' end of the human XIST gene against the human EST 
database brought to light a number of human EST sequences which are mapped to the 
region. Furthermore, PCR-amplification of human cDNA libraries and RNA- 
Fluorescence In Situ Hybridization (RNA-FISH) demonstrate that the human XIST gene 
has additional 2.8 kb downstream sequences which have not been documented as a part 
of the gene. These data show that the full length XIST cDNA is in fact 19.3 kb, not 16.5 
kb as previously reported. The newly defined region contains an intron that may be 
alternatively spliced and seven polyadenylation signal sequences. Sequences in the 
newly defined region show overall sequence similarity with the 3' terminal region of 
mouse Xist and three subregions exhibit considerably high sequence conservation. 
Interestingly, the new intron spans the first two subregions that are absent in one of the 
two isoforms of mouse Xist. Taken together, we revise the structure of human XIST 
cDNA and compare cDNA structures between human and mouse XIST/Xist. 

Finally, another paper has just been submitted documenting the structural 
explanation for the two RNA isoforms of murine Xist and the most reasonable 
mechanism for their production (38). To further define the molecular structures of the 
two Xist RNA isoforms, we performed northern blot analyses and RNAse protection 
assay (RPA). Consistent with previous data, our northern blot analyses show that 
majority of the two transcripts are directed by P2 promoter. Additionally, the northern 
probe sparming 853 base pairs sequence 3' of Xist gave only one band indicating the two 
isoforms are different at their 3' termini. Probes for the RPA spanned either originally 
defined 3' terminus or two of the putative polyadenylation signals at the 3' termini. 
Results of the RPA experiments clearly show that Xist does not end at the previously 
proposed site, and the two isoforms are different in their sizes which we called short (S) 
and long (L) forms. The S form ends at 17030 nucleotides from the +1 transcription start 
site while the L form ends at 17873 nucleotides of the Xist cDNA. Therefore the S form is 
843 nucleotides shorter than the L form. The following lines of evidences suggest that the 
difference in length at the 3' termini of the two Xist isoforms is due to differential 
polyadenylation, not splicing: 1) Only one band was detectable with the northern probes 
(pWS855, 859 and 860) spanning 3' of Xist. 2) RPA with P2 probe showed 3' termini of 
both S and L forms, and there are putative polyadenylation signals and hairpin 
structures close to these ends. 3) Analyses of splice site prediction program did not show 
any evidence of splicing in the sequence of L form. The extra sequence of the L form 
shares significant sequence similarity with our revision for the structure of the 3' region 
of human XIST. This suggests that mouse Xist depends on differential polyadenylation 
to generate the two isoforms while human XIST may depend on alternative splicing in 
addition to differential polyadenylation. The newly revised structure of Xist isoforms 
may play essential roles in the stability of Xist and the process of X inactivation. 

Clearly, the schedule for our prostate project was derailed by the important 
findings of inaccuracies in the Xist structure. Instead of being able to start our transgenic 
experiments immediately we have spent the last year defining the actual structure of the 
Xist gene and RNA. In addition to defining the true structure for mouse and Human 
Xist/XIST it was necessary to rebuild our cDNA constructs. We now report that full 
length cDNAs for mouse Xist (17.8 kb) have been made. 

In addition, using the revised Xist cDNA three types of expression constructs 
have also been made. First a vector that expresses Xist in a constituitive manner. Second, 



two types of inducible Xist constructs have been made, 1) a tetracycline regulated form, 
and 2) an interferon inducible form. 

All of three of these Xist expressing constructs have been introduced into 
somatic and ES cells by random transfection for the purpose of expression testing. The 
somatic cells used for these experiments are NIH 3T3 cells. These immortalized cells 
have been successfully transfected with the constructs. In each case the Xist constructs 
expressed RNA which we could detect both by Northern and RNA-FISH. The RNA- 
FISH results were quite exciting as the ectopically derived Xist was observed to "coat" or 
localize on the transgenic chromosome. 

A number of different ES cell lines which inducibly express ectopic Xist have 
been produced. These cell lines were characterized to determine the chromosome into 
which the transgene had integrated. Our current results show random integrations into 
mouse 4,5,8, a number of additional ES cell lines have yet to be characterized. The 
integration into distal chromosome 8 is especially exciting as this chromosome is directly 
relevant to our proposed prostate cancer model of LOH. 

Experiments to functionally characterize the transfected constructs have been 
undertaken. Each of the ES cell lines with Xist integrations, into either chromosome 4,5, 
8, have characterized by Xist localization, and cis-inactivation of gene expression. For 
chromosome 4 gene specific assay for c-jun, Tlr4, and CDC42 were evaluated by RNA 
FISH. For chromosome 5 gene specific assay for beta-actin, ketokinase, and CENP-A 
were evaluated by RNA FISH. For chromosome 8 gene specific assay for EIF-4E and Aprt 
were evaluated by RNA FISH. In the transfected ES cell cultures, when Xist is expressed 
in an inducible manner it localizes to the transgenic chromosome and result in silencing 
of the genes in cis to the construct. 

7) Key Research Accompllshements 
• Redefinition of murine and human Xist/XIST gene structure 
• Redefinition of murine and human Xist/XIST RNA structure 
• Constmction of 2 inducible versions of the murine Xist gene. 
• Transfection of these constmcts into mouse somatic and ES cells. 
• Conditional expression of the inducible version of murine Xist in ES cells. 
• Demonstrations that Xist cDNA alone will accomplish cis-silencing. 
• Targeting of muine Chromsome 8 with conditional Xist construct. 

8)ReportabIe Outcomes 

Publications 
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9) Conclusions 

The scientific conclusions of this report are very optimistic. We have redefined the 
structure for mouse and human Xist/XIST gene and transcript. This transcript causes cis- 
inactivation of the chromosome from which it is expressed. Thus as we continue to 

cause the desired result. 
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